Data Preprocessing for Evaluation of Recommendation Models in E-Commerce
نویسندگان
چکیده
منابع مشابه
A Personalization Recommendation Algorithm for E-Commerce
Many recommendation systems employ the collaborative filtering technology, which has been proved to be one of the most successful techniques in recommendation systems in recent years, the difficulties of the extreme sparsity of user rating data have become more and more severe. To solve the problems of scalability and sparsity in the collaborative filtering, this paper proposed a personalizatio...
متن کاملCost-Oriented Recommendation Model for E-Commerce
Contemporary Web stores offer a wide range of products to e-customers. However, online sales are strongly dominated by a limited number of bestsellers whereas other, less popular or niche products are stored in inventory for a long time. Thus, they contribute to the problem of frozen capital and high inventory costs. To cope with this problem, we propose using information on product cost in a r...
متن کاملGraph-based Analysis for E-Commerce Recommendation
Recommender systems automate the process of recommending products and services to customers based on various types of data including customer demographics, product features, and, most importantly, previous interactions between customers and products (e.g., purchasing, rating, and catalog browsing). Despite significant research progress and growing acceptance in real-world applications, two majo...
متن کاملPersonality-Based Recommendation in E-Commerce
In recent years there has been an exponential increase in the number of users each day adopting e-commerce as a purchasing vehicle of products and services. This has led to a growing interest from the scientific community in approaches and models that would improve the customer experience. Specifically, it has been repeatedly pointed out that the definition of a customer experience tailored to ...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Data
سال: 2019
ISSN: 2306-5729
DOI: 10.3390/data4010023